Heart Rate Variability, Learning & Flow

I looked at how my Heart Rate Variability (HRV) changed through the process of learning a simple task from introduction of the activity through to a point where the task was nearly pre-conscious and automatic. I compared the change in HRV to Csikszentmihalyi’s concept of moving from anxiety through Flow to boredom.

What I did:

  • played an Android based “brain game” twice through for approximately 4.5 minutes per session for twelve sessions,
  • measured the total heart rate coherence accumulated points score as given by Heartmath Pro over the total session,
  • divided the total accumulated points per session by the number of minutes to derive a “points per minute” score per session,
  • after entering that data into excel graphed the resulting points per session over the learning cycle.

How I did it:

In each session I would start Heartmath Pro and wait until 30 seconds had elapsed so I was getting an HRV based cardiac coherence reading. As soon as software started getting this reading started I would begin to play “Mind Games” on a Nexus 7 tablet. The game I played was 120 seconds long and included choosing one of four categories appropriate for a shown picture. The choices were cards, dice, cars or people and this example screenshot shows an image for a car with the four buttons below:

Screenshot_2014-10-09-10-15-10

 

I played two repetitions of the 120 second game per HRV reading session for an approximate total session length of 4.5 minutes and two sessions a day for six days.

Heartmath Pro awards points per five second interval based on a “coherence score.” The score is based on the ratio of Low Frequency cardiac output to High Frequency, where cardiac coherence is considered to be achieved when all frequencies group in the Low Frequency band around .1Hz. Every five seconds the software awards achievement points based on the coherence score, meaning if your coherence score was 3.5 for that five seconds the software adds 3.5 points to your points total. The final outcome of a session looks like the this:

Slide1

This scoring is a proxy for how variable your heart rate was during a session and thus how relaxed your physiology was in the period. Comparing the points total per minute to other measures like LF/HF and rMSSD show that higher points per minute and more “stress free” LF/HF and rMSSD correlate.

Once the sessions were completed I entered the session length and score in an excel spreadsheet which then calculated the points/minute for that session. In the session shown above 138 achievement points divided by 4.52 minutes gave an outcome of 40.9 points/minute. Scores playing the game over the twelve sessions ranged from 21.0 to 52.3 points/minute.

What I learned:

My initial idea was to avoid creating stress with the mind game by not paying attention to the mind game score, which was a measure of correctly categorized images. I was trying to only engage my attention and take a reading of HRV. I wanted to compare my HRV during engaged attention to a baseline where I let my mind wander and to when I was working on a computer. It was in session seven where I entered a very relaxed state and both the points/session and the mind game scores were going noticeably upward that I started looking at this learning curve in isolation.

In that seventh session I entered a relaxed state and no longer had to think about the answer as the image flashed on the screen. My fingers just moved. By sessions eight through eleven I was watching my fingers move without really thinking at all. And time, while it did not disappear, was no longer in my attention. I thought I may have entered a state described by Csikszentmihalyi’s Flow theory where  challenge and skills balance, as shown in this graph:

Flow Channel Image

When undertaking a task and the challenges match the skills and feedback is immediate one enters a relaxed and enjoyable state where time seems to disappear and the action just emerges. In the seventh and eighth sessions I realized this might be happening. Here is how that change in state was reflected in my HRV readings:

Slide1

As higher HRV is associated with a relaxed state, what we see here is my physiological reaction to a challenge of a uniform difficulty was becoming more relaxed with repetition.

My subjective experience in sessions one through five was that of feeling “alert in the head” meaning I was calculating the answers as the images came up. And I was keenly aware of the time during each session and recall saying “only 20 seconds to go” or “only one more session.” This was a state of low level stress and anxiety.

Session six still felt like that but the HRV points/minute score was starting upward. By session seven the subjective experience started to change. I was relaxed during those sessions and time, while not completely gone, seemed to fade. My HRV points/minute continued upward. During session eleven and twelve the scores seemed to drop. I was doing the brain game automatically and not feeling stress of doing the game but my mind was starting to wander to other topics. Boredom had begun.

Using the Flow chart this is what I think the HRV chart shows:

Slide2

In the first five sessions my HRV reading was an average of 25 points/minute. As subjectively I began entering the Flow state from session six through ten my average HRV reading was 43 points/minute. During session 11 and 12 as my mind started to wander a bit the average on those sessions was 35 points per minute. Not stress, but not as relaxed and engaged.

Issues and Next Steps:

The issue here is I am writing this up before gathering sufficient data to see the full curve. For example, if I keep playing the game to absolute stultifying boredom where does the HRV points/minute level out? And how do I add challenge that is compatible with the “learned skill” of choosing the four categories?

The next steps are to see if HRV can be an indicator of location on the Flow continuum with respect to a learning task. If so, the challenge inherent in that task can be adjusted if the HRV readings indicatate that the learner is either 1) not emerging from early stages of learning anxiety or 2) the learner is dropping into a state of boredom because the task is mastered.

Sign up for the QuantXLaFont Newsletter
Get our lifestyle tips and studies delivered to your inbox.
Thank you! We don't spam :)

3 thoughts on “Heart Rate Variability, Learning & Flow

  1. Interesting approach. This is a good reminder to HRVers that we need to remember stress can be both good and bad, it depends on the cause: we want acute stresses like learning and exercise, we just don’t want chronic stresses from things like emotional turmoil or bad environments.

    More specifically: a scatter plot of the data would be a useful visualization. From the screenshot, it looks like the brain game in question is pretty trivial and uninteresting; that would be boring and you might plateau before you get much data on your progress curve. Maybe a more challenging task like (adaptive) dual n-back would work better.

      1. Sounds good. Thus far, I’ve got my Zephyr & smartphone up and running with HRV Logger. It’s a bit awkward, but interesting so far. Mostly I’ve just been watching my blood phobia kick in whenever I try out a blood glucose test using an old kit I found laying around.

Leave a Reply

Your email address will not be published. Required fields are marked *